Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Hydroxycyclopentane-1-carboxylic acid

Richard Betz and Peter Klüfers*

Ludwig-Maximilians Universität, Department Chemie und Biochemie, Butenandtstrasse 5-13 (Haus D), 81377 München, Germany Correspondence e-mail: kluef@cup.uni-muenchen.de

Received 28 August 2007; accepted 28 August 2007

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.003 Å; R factor = 0.050; wR factor = 0.144; data-to-parameter ratio = 15.4.

The title compound, C₆H₁₀O₃, crystallizes with three independent molecules in the asymmetric unit. In all three molecules, which have similar envelope conformations, the cyclopentane ring is arranged skew to the carboxyl group. Intermolecular $O-H \cdots O$ hydrogen bonds link the molecules into two-dimensional layers parallel to the *ab* plane.

Related literature

The title compound was prepared according to a standard procedure (Becker et al., 2001).

Experimental

Crystal data

C₆H₁₀O₃ $M_r = 130.14$ Monoclinic, $P2_1/c$ a = 16.0000 (16) Åb = 6.3490 (4) Å c = 19.664 (2) Å $\beta = 96.812 \ (12)^{\circ}$

V = 1983.4 (3) Å³ Z = 12Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 200 (2) K $0.50 \times 0.20 \times 0.11 \ \mathrm{mm}$

Data collection

Stoe IPDS diffractometer Absorption correction: numerical (X-RED; Stoe & Cie, 1997) $T_{\min} = 0.977, \ T_{\max} = 0.989$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	Only H-atom displacement para-
$wR(F^2) = 0.144$	meters refined
S = 0.95	$\Delta \rho_{\rm max} = 0.61 \ {\rm e} \ {\rm \AA}^{-3}$
3774 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
245 parameters	

13242 measured reflections

 $R_{\rm int} = 0.051$

3774 independent reflections

2574 reflections with $I > 2\sigma(I)$

Table 1

H	lyd	rogen-	bond	geometry	(A, °	°).
---	-----	--------	------	----------	-------	-----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O12-H12\cdots O22^{i}$	0.84	1.86	2.684 (2)	165
O111-H111O112 ⁱⁱ	0.84	1.80	2.624 (2)	167
$O22 - H22 \cdot \cdot \cdot O32^{iii}$	0.84	1.93	2.757 (2)	169
$O211 - H211 \cdots O212^{iv}$	0.84	1.82	2.6559 (19)	177
$O32-H32\cdots O12^{v}$	0.84	1.89	2.710 (2)	166
$O311 - H311 \cdots O312^{vi}$	0.84	1.79	2.629 (2)	175

Symmetry codes: (i) x, y + 1, z; (ii) -x, -y + 2, -z; (iii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) -x + 1, -y, -z; (v) $x, -y + \frac{1}{2}, z + \frac{1}{2};$ (vi) -x + 1, -y, -z + 1.

Data collection: IPDS Software (Stoe & Cie, 1996); cell refinement: IPDS Software; data reduction: IPDS Software; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

The authors thank Dr Peter Mayer and Sandra Albrecht for professional support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2295).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Becker, H. G. O., Beckert, R., Domschke, G., Fanghänel, E., Habicher, W. D., Metz, P., Pavel, D. & Schwetlick, K. (2001). Organikum - Organischchemisches Grundpraktikum. Weinheim: Wiley-VCH.

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Stoe & Cie (1996). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.

Stoe & Cie (1997). X-RED. Version 1.09. Stoe & Cie GmbH, Darmstadt, Germany.

Acta Cryst. (2007). E63, o3932 [doi:10.1107/S1600536807042183]

1-Hydroxycyclopentane-1-carboxylic acid

R. Betz and P. Klüfers

Comment

The title compound, $C_6H_{10}O_3$, was prepared as chelating molecule bearing the conformationally flexible cyclopentane group. It was obtained upon acidic hydrolysis of the cyanohydrin of cyclopentanone. The cyclopentane ring adopts a skew orientation to the planar carboxyl group. Hydrophobic and hydrophilic sheets alternate along [001] (Figure 2). Each individual hydrophilic sheet is composed of the typical bidentately linked carboxylic-acid dimers. The dimer packing is supported by three symmetrically independent, laterally running, cooperative, linearly infinite hydrogen-bond systems which are exclusively formed by hydroxyl-OH vectors.

The molecular structure (Fig. 1) shows a carboxy- and a hydroxy-group attached to the cyclopentane ring.

The molecular packing (Fig. 2) shows O-H…O intermolecular hydrogen bonds (Table 2).

Experimental

The title compound was prepared according to standard procedures (Becker *et al.*, 2001) upon acidic hydrolysis of the cyanohydrin of cyclopentanone. Crystals suitable for X-ray analysis were directly obtained from the crystallized reaction product.

Refinement

All H atoms were located in a difference map and refined as riding on their parent atoms, with C—H = 0.99 Å and O—H = 0.84 Å. One common isotropic displacement parameter for all H atoms was refined to $U_{iso}(H) = 0.0748$ (17).

Figures

Fig. 1. Three independent molecules in asymmetric unit of (I), with atom labels and displacement ellipsoids drawn at the 50% probability level.

Fig. 2. The packing of (I), viewed along [0 1 0].

1-Hydroxycyclopentane-1-carboxylic acid

Crystal data	
C ₆ H ₁₀ O ₃	$F_{000} = 840$
$M_r = 130.14$	$D_{\rm x} = 1.307 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5000 reflections
a = 16.0000 (16) Å	$\theta = 2.3 - 25.9^{\circ}$
b = 6.3490 (4) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 19.664 (2) Å	T = 200 (2) K
$\beta = 96.812 \ (12)^{\circ}$	Rod, colourless
$V = 1983.4 (3) \text{ Å}^3$	$0.50\times0.20\times0.11~mm$
Z = 12	

Data collection

Stoe IPDS diffractometer	3774 independent reflections
Radiation source: fine-focus sealed tube	2574 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.051$
T = 200(2) K	$\theta_{\text{max}} = 25.9^{\circ}$
area detection scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: numerical (X-RED; Stoe & Cie, 1997)	$h = -19 \rightarrow 19$
$T_{\min} = 0.977, \ T_{\max} = 0.989$	$k = -7 \rightarrow 7$
13242 measured reflections	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Only H-atom displacement parameters refined
$wR(F^2) = 0.144$	$w = 1/[\sigma^2(F_o^2) + (0.0525P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.95	$(\Delta/\sigma)_{\rm max} < 0.001$
3774 reflections	$\Delta \rho_{max} = 0.61 \text{ e } \text{\AA}^{-3}$
245 parameters	$\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$
Primary atom site logation: structure inverient direct	

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
012	0.19965 (8)	0.6718 (2)	0.10560 (7)	0.0364 (3)
H12	0.2196	0.7943	0.1064	0.0748 (17)*
0111	-0.01397 (10)	0.8320 (4)	0.06625 (10)	0.0740 (7)
H111	-0.0353	0.9189	0.0370	0.0748 (17)*
0112	0.10236 (10)	0.9290 (3)	0.02446 (9)	0.0517 (5)
C11	0.06518 (12)	0.8249 (4)	0.06479 (10)	0.0359 (5)
C12	0.11415 (11)	0.6807 (3)	0.11629 (10)	0.0332 (4)
C13	0.08053 (14)	0.4546 (4)	0.11271 (12)	0.0432 (5)
H131	0.0185	0.4533	0.1023	0.0748 (17)*
H132	0.1052	0.3731	0.0771	0.0748 (17)*
C14	0.1072 (2)	0.3651 (5)	0.18264 (16)	0.0776 (9)
H141	0.1581	0.2768	0.1819	0.0748 (17)*
H142	0.0618	0.2766	0.1975	0.0748 (17)*
C15	0.1257 (2)	0.5482 (5)	0.23127 (13)	0.0666 (8)
H151	0.0909	0.5387	0.2695	0.0748 (17)*
H152	0.1858	0.5481	0.2504	0.0748 (17)*
C16	0.10471 (16)	0.7461 (4)	0.19014 (11)	0.0460 (6)
H161	0.1442	0.8613	0.2055	0.0748 (17)*
H162	0.0465	0.7930	0.1943	0.0748 (17)*
O22	0.28938 (8)	0.0287 (2)	0.10435 (7)	0.0333 (3)
H22	0.2801	0.1239	0.0748	0.0748 (17)*
O211	0.51060 (9)	0.0212 (3)	0.09287 (7)	0.0465 (4)
H211	0.5374	0.0122	0.0588	0.0748 (17)*
O212	0.40014 (9)	-0.0017 (2)	0.01254 (7)	0.0375 (4)
C21	0.42968 (12)	0.0148 (3)	0.07252 (10)	0.0324 (4)
C22	0.37585 (12)	0.0299 (4)	0.13065 (10)	0.0336 (5)
C23	0.39049 (14)	-0.1550 (5)	0.18061 (11)	0.0476 (6)
H231	0.3581	-0.2802	0.1628	0.0748 (17)*
H232	0.4509	-0.1924	0.1884	0.0748 (17)*
C24	0.36000 (19)	-0.0771 (6)	0.24609 (13)	0.0733 (10)
H241	0.3964	-0.1317	0.2864	0.0748 (17)*
H242	0.3016	-0.1247	0.2489	0.0748 (17)*
C25	0.36404 (18)	0.1663 (6)	0.24395 (12)	0.0648 (8)
H251	0.3075	0.2276	0.2461	0.0748 (17)*
H252	0.4027	0.2204	0.2831	0.0748 (17)*
C26	0.39636 (15)	0.2230 (4)	0.17639 (11)	0.0490 (6)
H261	0.4578	0.2496	0.1832	0.0748 (17)*
H262	0.3675	0.3499	0.1560	0.0748 (17)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

O32	0.25059 (8)	0.1270 (2)	0.52112 (6)	0.0329 (3)
H32	0.2406	0.0209	0.5444	0.0748 (17)*
O311	0.42291 (9)	0.0291 (3)	0.42673 (7)	0.0458 (4)
H311	0.4743	0.0110	0.4399	0.0748 (17)*
O312	0.41433 (9)	0.0178 (3)	0.53879 (7)	0.0384 (4)
C31	0.38133 (12)	0.0366 (3)	0.47965 (9)	0.0308 (4)
C32	0.28721 (12)	0.0615 (3)	0.46198 (9)	0.0312 (4)
C33	0.26007 (14)	0.2220 (4)	0.40524 (11)	0.0426 (5)
H331	0.2452	0.3581	0.4252	0.0748 (17)*
H332	0.3060	0.2460	0.3765	0.0748 (17)*
C34	0.18311 (15)	0.1247 (5)	0.36266 (12)	0.0547 (7)
H341	0.1346	0.2222	0.3602	0.0748 (17)*
H342	0.1957	0.0947	0.3155	0.0748 (17)*
C35	0.16372 (14)	-0.0772 (4)	0.39858 (12)	0.0507 (6)
H351	0.1399	-0.1846	0.3653	0.0748 (17)*
H352	0.1235	-0.0516	0.4322	0.0748 (17)*
C36	0.24874 (12)	-0.1463 (4)	0.43407 (11)	0.0389 (5)
H361	0.2834	-0.2118	0.4013	0.0748 (17)*
H362	0.2423	-0.2470	0.4715	0.0748 (17)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
012	0.0293 (7)	0.0307 (8)	0.0486 (8)	-0.0011 (6)	0.0031 (6)	0.0015 (6)
0111	0.0356 (9)	0.0997 (17)	0.0874 (13)	0.0133 (10)	0.0095 (8)	0.0552 (13)
0112	0.0425 (9)	0.0562 (12)	0.0573 (10)	0.0042 (7)	0.0098 (7)	0.0238 (8)
C11	0.0309 (10)	0.0389 (13)	0.0388 (10)	0.0004 (8)	0.0073 (8)	0.0037 (9)
C12	0.0288 (10)	0.0323 (12)	0.0385 (10)	0.0000 (8)	0.0035 (7)	0.0016 (8)
C13	0.0361 (11)	0.0382 (14)	0.0557 (13)	-0.0067 (9)	0.0068 (9)	0.0002 (10)
C14	0.117 (3)	0.045 (2)	0.0694 (18)	-0.0041 (17)	0.0041 (17)	0.0184 (14)
C15	0.095 (2)	0.0574 (19)	0.0457 (14)	0.0041 (15)	0.0031 (14)	0.0116 (12)
C16	0.0596 (14)	0.0399 (15)	0.0392 (11)	0.0095 (10)	0.0088 (10)	-0.0002 (9)
O22	0.0282 (7)	0.0375 (9)	0.0346 (7)	-0.0020 (6)	0.0051 (5)	0.0076 (6)
O211	0.0289 (7)	0.0804 (13)	0.0303 (7)	-0.0023 (7)	0.0040 (6)	-0.0044 (7)
O212	0.0334 (7)	0.0513 (10)	0.0278 (7)	-0.0028 (6)	0.0036 (5)	-0.0039 (6)
C21	0.0308 (10)	0.0356 (13)	0.0308 (10)	-0.0026 (8)	0.0035 (7)	-0.0010 (8)
C22	0.0290 (9)	0.0425 (13)	0.0296 (10)	-0.0044 (8)	0.0055 (7)	0.0016 (8)
C23	0.0362 (11)	0.0629 (17)	0.0433 (12)	0.0046 (10)	0.0024 (9)	0.0192 (11)
C24	0.0648 (18)	0.115 (3)	0.0420 (14)	0.0050 (17)	0.0132 (12)	0.0246 (16)
C25	0.0625 (16)	0.100 (3)	0.0338 (12)	-0.0154 (16)	0.0128 (11)	-0.0114 (13)
C26	0.0454 (12)	0.0672 (18)	0.0369 (11)	-0.0174 (11)	0.0151 (9)	-0.0174 (11)
O32	0.0333 (7)	0.0326 (9)	0.0342 (7)	0.0020 (6)	0.0097 (5)	-0.0040 (6)
O311	0.0302 (7)	0.0780 (13)	0.0298 (7)	0.0093 (7)	0.0059 (6)	-0.0010(7)
O312	0.0327 (7)	0.0554 (11)	0.0269 (7)	0.0057 (6)	0.0023 (5)	0.0020 (6)
C31	0.0311 (10)	0.0333 (12)	0.0283 (9)	0.0035 (8)	0.0045 (7)	-0.0013 (8)
C32	0.0309 (10)	0.0351 (12)	0.0281 (9)	0.0046 (8)	0.0056 (7)	-0.0024 (8)
C33	0.0421 (12)	0.0496 (15)	0.0360 (10)	0.0099 (10)	0.0048 (8)	0.0074 (10)
C34	0.0391 (12)	0.084 (2)	0.0391 (12)	0.0119 (12)	-0.0014 (9)	0.0080 (12)

C35	0.0365 (11)	0.0659 (18)	0.0474 (13)	0.0004 (11)	-0.0045 (9)	-0.0123 (12)
C36	0.0355 (11)	0.0415 (14)	0.0392 (11)	0.0023 (9)	0.0017 (8)	-0.0112 (9)
Geometric para	meters (Å, °)					
012—C12		1.410 (2)	C23—	-H232	0.99	000
O12—H12		0.8400	C24—	-C25	1.54	7 (5)
0111—C11		1.271 (3)	C24—	-H241	0.99	000
O111—H111		0.8400	C24—	-H242	0.99	000
O112—C11		1.238 (3)	C25—	-C26	1.52	25 (3)
C11—C12		1.513 (3)	C25—	-H251	0.99	000
C12—C13		1.532 (3)	C25—	-H252	0.99	000
C12—C16		1.535 (3)	C26—	-H261	0.99	000
C13—C14		1.503 (4)	C26—	-H262	0.99	000
C13—H131		0.9900	O32—	-C32	1.42	25 (2)
C13—H132		0.9900	O32—	-H32	0.84	00
C14—C15		1.512 (4)	O311-	C31	1.30	01 (2)
C14—H141		0.9900	O311-	—H311	0.84	00
C14—H142		0.9900	O312-	C31	1.22	25 (2)
C15—C16		1.510 (4)	C31-	-C32	1.51	3 (3)
C15—H151		0.9900	C32—	-C36	1.53	60 (3)
С15—Н152		0.9900	C32—	-C33	1.53	35 (3)
C16—H161		0.9900	C33—	-C34	1.53	34 (3)
С16—Н162		0.9900	C33—	-H331	0.99	000
O22—C22		1.418 (2)	C33—	-H332	0.99	000
O22—H22		0.8400	C34—	-C35	1.51	3 (4)
O211—C21		1.310 (2)	C34—	-H341	0.99	000
O211—H211		0.8399	C34—	-H342	0.99	000
O212—C21		1.222 (2)	C35—	-C36	1.51	8 (3)
C21—C22		1.514 (3)	C35—	-H351	0.99	000
C22—C23		1.531 (3)	C35—	-H352	0.99	000
C22—C26		1.533 (3)	C36–	-H361	0.99	000
C23—C24		1.513 (4)	C36—	-H362	0.99	000
С23—Н231		0.9900				
С12—О12—Н12		109.5	C23—	-C24—H241	110	.4
С11—О111—Н1	11	109.5	C25—	-C24—H241	110	.4
0112—C11—O1	11	123.5 (2)	C23—	-C24—H242	110	.4
O112—C11—C12	2	120.12 (18)	C25—	-C24—H242	110	.4
0111—C11—C12	2	116.39 (18)	H241-	—С24—Н242	108	.6
O12—C12—C11		111.05 (16)	C26—	-C25-C24	106	.2 (2)
O12—C12—C13		107.29 (17)	C26—	-C25—H251	110	.5
C11—C12—C13		112.65 (17)	C24—	-C25—H251	110	.5
O12—C12—C16		110.98 (17)	C26—	-C25—H252	110	.5
C11—C12—C16		111.61 (17)	C24—	-C25—H252	110	.5
C13—C12—C16		102.92 (18)	H251-	—С25—Н252	108	.7
C14—C13—C12		104.6 (2)	C25—	-C26—C22	104	.6 (2)
C14—C13—H13	1	110.8	C25—	-C26—H261	110	.8
С12—С13—Н13	1	110.8	C22—	-C26—H261	110	.8
C14—C13—H13	2	110.8	C25—	-C26—H262	110	.8

C12—C13—H132	110.8	C22—C26—H262	110.8
H131—C13—H132	108.9	H261—C26—H262	108.9
C13—C14—C15	107.5 (2)	С32—О32—Н32	109.5
C13—C14—H141	110.2	C31—O311—H311	109.5
C15—C14—H141	110.2	O312—C31—O311	123.52 (17)
C13—C14—H142	110.2	O312—C31—C32	122.24 (17)
C15—C14—H142	110.2	O311—C31—C32	114.19 (16)
H141—C14—H142	108.5	O32—C32—C31	109.73 (14)
C16—C15—C14	106.7 (2)	O32—C32—C36	110.95 (16)
C16—C15—H151	110.4	C31—C32—C36	109.85 (16)
C14—C15—H151	110.4	O32—C32—C33	106.93 (16)
С16—С15—Н152	110.4	C31—C32—C33	115.09 (17)
C14—C15—H152	110.4	C36—C32—C33	104.16 (16)
H151—C15—H152	108.6	C34—C33—C32	105.6 (2)
C15-C16-C12	104.0 (2)	C34—C33—H331	110.6
C15-C16-H161	111.0	С32—С33—Н331	110.6
C12—C16—H161	111.0	С34—С33—Н332	110.6
C15-C16-H162	111.0	С32—С33—Н332	110.6
C12—C16—H162	111.0	H331—C33—H332	108.8
H161—C16—H162	109.0	C35—C34—C33	106.38 (18)
C22—O22—H22	109.5	C35—C34—H341	110.5
C21—O211—H211	109.5	C33—C34—H341	110.5
O212—C21—O211	123.56 (18)	С35—С34—Н342	110.5
O212—C21—C22	123.01 (17)	C33—C34—H342	110.5
O211—C21—C22	113.43 (16)	H341—C34—H342	108.6
O22—C22—C21	110.00 (15)	C34—C35—C36	103.73 (19)
O22—C22—C23	107.33 (16)	С34—С35—Н351	111.0
C21—C22—C23	112.24 (18)	С36—С35—Н351	111.0
O22—C22—C26	110.50 (18)	С34—С35—Н352	111.0
C21—C22—C26	113.11 (17)	С36—С35—Н352	111.0
C23—C22—C26	103.35 (18)	H351—C35—H352	109.0
C24—C23—C22	104.8 (2)	C35—C36—C32	102.47 (18)
C24—C23—H231	110.8	C35—C36—H361	111.3
C22—C23—H231	110.8	C32—C36—H361	111.3
С24—С23—Н232	110.8	С35—С36—Н362	111.3
С22—С23—Н232	110.8	С32—С36—Н362	111.3
H231—C23—H232	108.9	H361—C36—H362	109.2
C23—C24—C25	106.5 (2)		
O112—C11—C12—O12	-5.7 (3)	C26—C22—C23—C24	37.0 (2)
O111—C11—C12—O12	174.7 (2)	C22—C23—C24—C25	-23.2 (3)
O112—C11—C12—C13	-126.1 (2)	C23—C24—C25—C26	0.5 (3)
O111—C11—C12—C13	54.3 (3)	C24—C25—C26—C22	22.4 (3)
O112-C11-C12-C16	118.7 (2)	O22—C22—C26—C25	78.0 (2)
O111-C11-C12-C16	-60.9 (3)	C21—C22—C26—C25	-158.19 (19)
O12—C12—C13—C14	82.0 (2)	C23—C22—C26—C25	-36.6 (2)
C11—C12—C13—C14	-155.5 (2)	O312—C31—C32—O32	18.8 (3)
C16—C12—C13—C14	-35.2 (2)	O311—C31—C32—O32	-163.73 (18)
C12—C13—C14—C15	20.0 (3)	O312—C31—C32—C36	-103.4 (2)
C13-C14-C15-C16	3.3 (4)	O311—C31—C32—C36	74.0 (2)

C14-C15-C16-C12	-25.2 (3)	O312—C31—C32—C33	139.4 (2)
O12-C12-C16-C15	-77.4 (3)	O311—C31—C32—C33	-43.1 (3)
C11—C12—C16—C15	158.2 (2)	O32—C32—C33—C34	-96.4 (2)
C13-C12-C16-C15	37.1 (2)	C31—C32—C33—C34	141.41 (18)
O212—C21—C22—O22	-1.8 (3)	C36—C32—C33—C34	21.1 (2)
O211—C21—C22—O22	178.15 (17)	C32—C33—C34—C35	4.5 (2)
O212—C21—C22—C23	117.6 (2)	C33—C34—C35—C36	-28.5 (2)
O211—C21—C22—C23	-62.4 (2)	C34—C35—C36—C32	41.5 (2)
O212—C21—C22—C26	-125.9 (2)	O32—C32—C36—C35	76.1 (2)
O211—C21—C22—C26	54.0 (3)	C31—C32—C36—C35	-162.41 (17)
O22—C22—C23—C24	-79.8 (2)	C33—C32—C36—C35	-38.6 (2)
C21—C22—C23—C24	159.19 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O12—H12···O22 ⁱ	0.84	1.86	2.684 (2)	165
O111—H111…O112 ⁱⁱ	0.84	1.80	2.624 (2)	167
O22—H22···O32 ⁱⁱⁱ	0.84	1.93	2.757 (2)	169
O211—H211····O212 ^{iv}	0.84	1.82	2.6559 (19)	177
O32—H32···O12 ^v	0.84	1.89	2.710 (2)	166
O311—H311···O312 ^{vi}	0.84	1.79	2.629 (2)	175
~				

Symmetry codes: (i) x, y+1, z; (ii) -x, -y+2, -z; (iii) x, -y+1/2, z-1/2; (iv) -x+1, -y, -z; (v) x, -y+1/2, z+1/2; (vi) -x+1, -y, -z+1.

Fig. 2